Secure Data Processing in the Cloud by Managing Risks

Sharad Mehrotra

Dept. of Computer Science University of California, Irvine

&

Anoop Singhal

Computer Security Division National Institute of Standards and Technology Gaithersburg MD

Outline

Risk-based Approach to mgmt in cloud [Sharad]

- Motivation

• Two main challenges:

- Modeling Risks [Anoop]
 - State-of-the-art In enterprise networks
 - Thoughts on generalizing to cloud data
- Given risks, data and workload partitioning problem [Sharad]
 - Some initial results

Cloud Computing

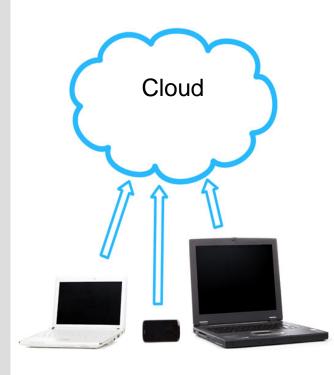
• X as a service, where X is:

- Infrastructure, platforms, Software,
- Storage, Application, test environments...

Characteristics:

- Elastic -- Use as much as your needs
- Pay for only what you use
- Don't worry about failure
- No system management headaches
 - E.g., loss of data due to failures
- Hopefully cheaper due to economy of scale
 - Better control over IT investment

Cloud Computing


- X as a service, where X is:
 - Infrastructure, platforms, Software,
 - Storage, Application, test environments...
- Characteristics:
 - Elastic -- Use as much as your needs
 - Pay for only what you use
 - Don't worry about failure
 - No system management headaches
 - E.g., loss of data due to failures
 - Hopefully cheaper due to economy of scale
 - Better control over IT investment

Loss of control

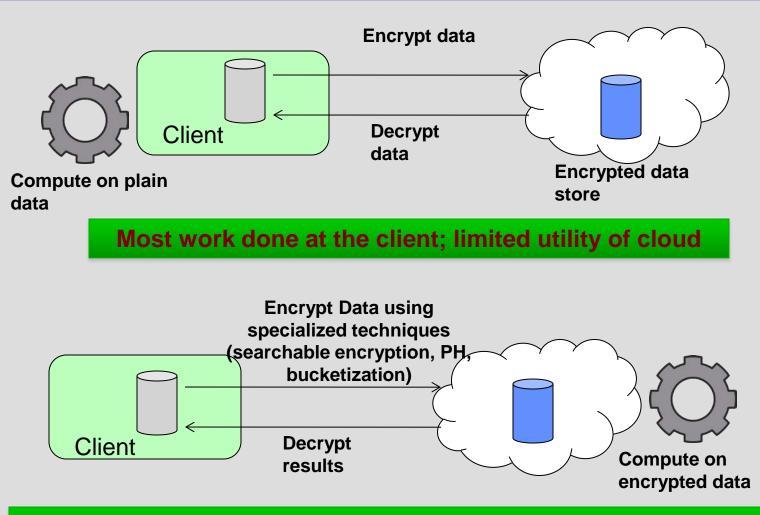
- Loss of Control: Inability to restrict (and monitor) other entities from accessing ones data.
- Factors leading to loss of control
 - Data resides in shared systems administration of which is not in owners control.
 - Unknown applications and processes share resources with your apps and data.
 - Data owners have no control over CSP's internal data security personnel, policies or their enforcement.
 - Insider attacks
 - Data mining attacks leading to information leakage

Implications of Loss of Control

End Users

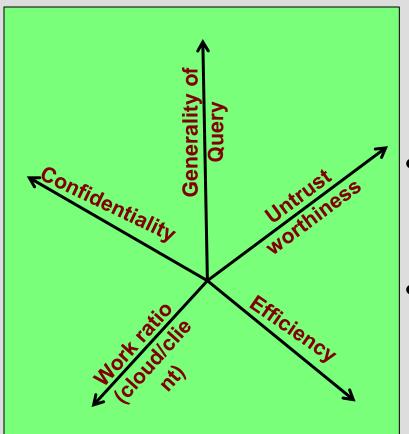
Integrity

- Will the CSP serve my data correctly?
- Can my data get corrupted?
- Availability
 - Will I have access to my data and services at all times?


Security

- Will the CSP implement its own security policies appropriately?
- Privacy & confidentiality
 - Will sensitive data remain confidential?
 - Will my data be vulnerable to misuse? By other tenants? By the service provider?

What is the solution?


Encrypt sensitive data before uploading to the cloud

2 models of querying/Computing on encrypted data

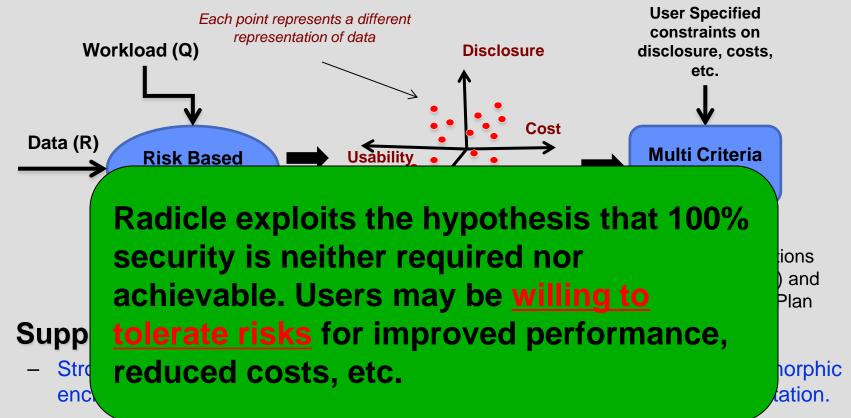
Can utilize techniques for computing on encrypted data (15 years worth of work)

Search over Encrypted Data

Existing solutions

- can be characterized along multiple dimensions.
- Represent points in the spectrum of possibilities
- Explore different tradeoffs.

Example:


- Cloud as storage \rightarrow poor work ratio
- Homomorphic encryption → too inefficient to be practical

• Mix-n-Match

 Many existing methods can be "mixed-nmatched" to provide practical solutions for specific problems

Computing on encrypted data remains an active research area!

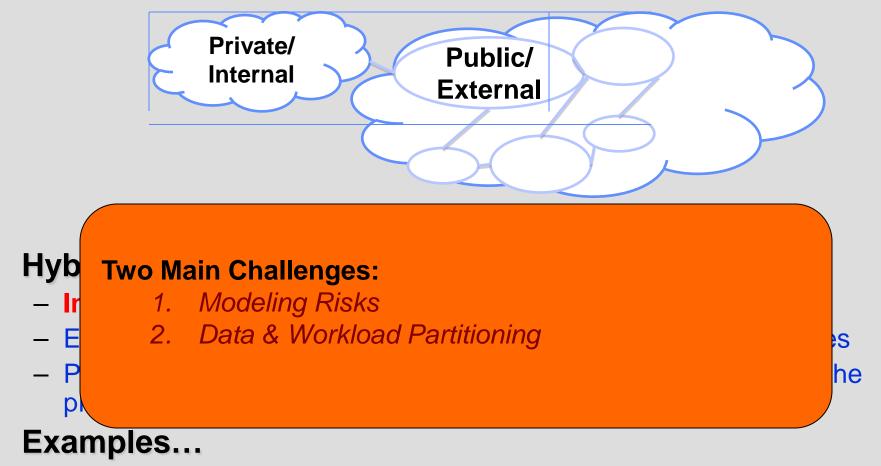
Risk Based Data Processing in Clouds (Radicle Project)

- Model exposure-risks of representation
 - # sensitive data items exposed on public cloud, The representation of data on cloudside, Duration of exposure, The trustworthiness of service-provider, ..

Partition computation and data between server and client

 such that owner can strike a desired balance between exposure risk, performance, usability and monetary costs incurred.

Design Spectrum


Input:

- Data Model How is data represented?
 - Relational, Semi-structured, Key-Value Stores, Text...
- Workload Model What type of workload is given?
 - > (Dynamic or Batch) SQL or HIVE Queries, MapReduce Jobs...
- Sensitivity Model How is sensitivity specified?
 - Attribute Level, Privacy Associations, View-Based...
- Metrics:
 - **Risk Model** How is disclosure measured?
 - Number of exposed sensitive cells, Inference Exposure...
 - Resource Allocation costs How is cost measured?
 - Based on elastic pricing model of public cloud providers
 - Performance
 - ≻ ...

Solutions Space:

- Data Representation Model How is data on public cloud partitioned and represented?
- Workload Partitioning Model How should workload be partitioned?
 - Inter-query Partitioning, Intra-query Partitioning...

Hybrid Clouds

- <u>http://www-01.ibm.com/software/tivoli/products/hybrid-cloud/</u>
- http://www.emc.com/campaign/global/hybridcloud/index.htm

Outline

- Risk-based Approach to data management in cloud [Sharad]
 - Motivation focusing on why
- Modeling Risks [Anoop]
 - State-of-the-art In enterprise networks
 - Thoughts on generalizing to cloud data
- Given risks, example data and workload partitioning problem [Sharad]
 - Some initial results

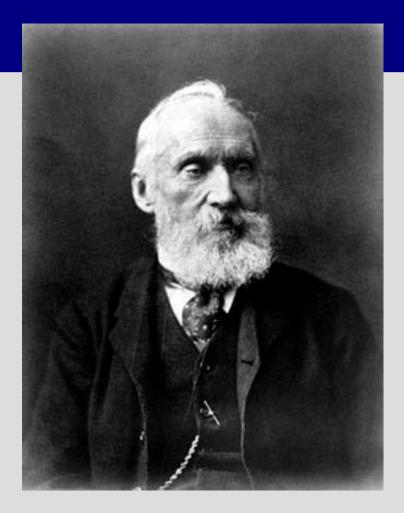
Security Risk Modeling for Cloud Computing

Anoop Singhal

Computer Security Division National Institute of Standards and Technology Gaithersburg MD

Email: psinghal@nist.gov

Enterprise Systems Security Management


- Network Systems are getting large and complex
- Vulnerabilities in software are constantly discovered
- System Security Management is a challenging task
- Even a small system can have numerous attack paths

Enterprise System Security Management

- Currently, security management is more of an art and not a science
- System administrators operate by instinct and learned experience
- There is no objective way of measuring the security risk in a networked system
- "If I change this network configuration setting will my network become more or less secure?"

Challenges in Modeling Security Risk

- Typical issues addressed in the literature
 - How can a database server be secured from intruders?
 - How do I stop an ongoing intrusion?
- Better questions to ask:
 - How secure is the database server in a given network configuration?
 - How much security does a new configuration provide?
 - How can I plan on security investments so it provides a certain amount of security?
- For this we need a model for security risk

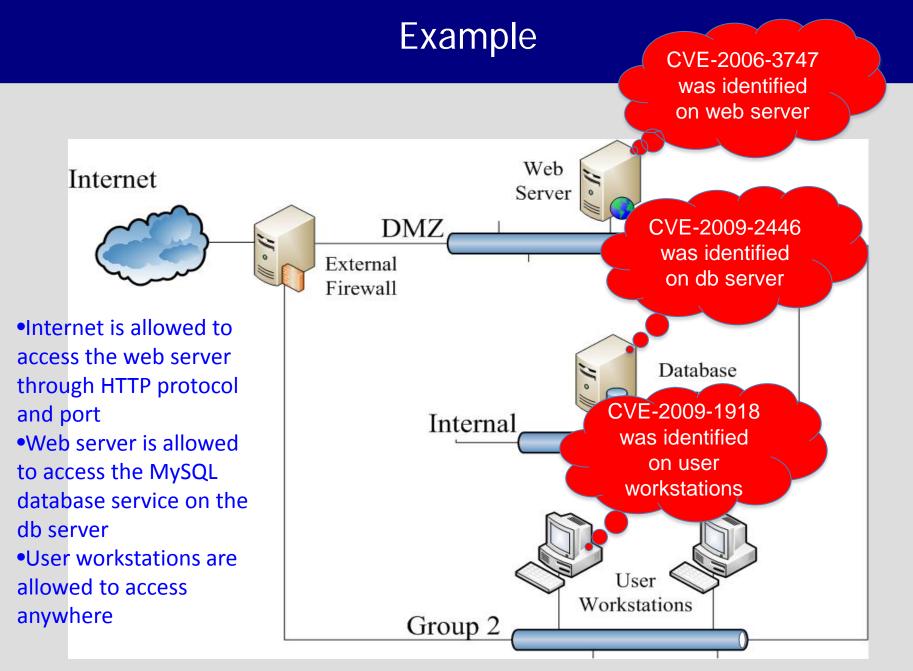
If you cannot measure (or model) it, you cannot improve it.

---Lord Kelvin 22

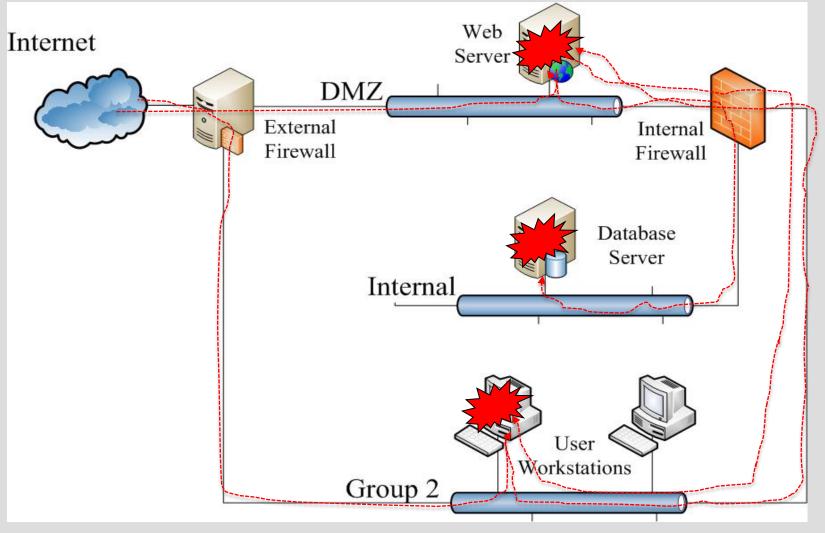
Challenges in Security Risk Metrics

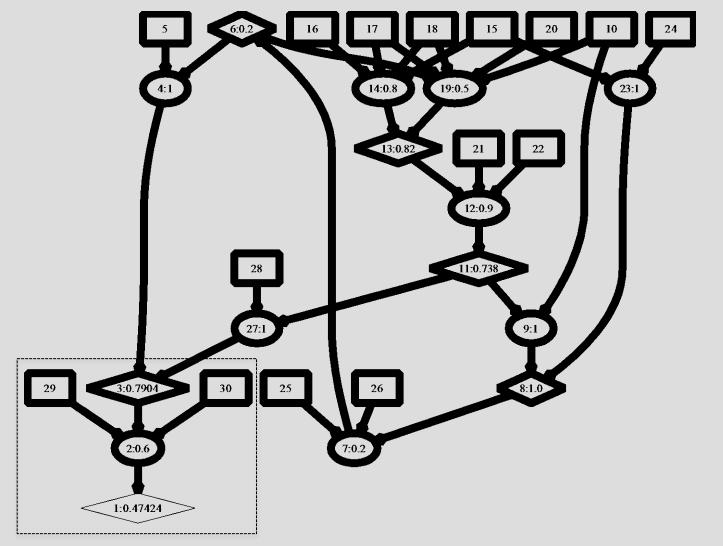
- Metric for individual vulnerability exists
 - Impact, exploitability, temporal, environmental, etc.
 - E.g., the Common Vulnerability Scoring System (CVSS) v2 released on June 20, 2007¹
- However, how to compose individual measures for the overall security of a network?
 - Our work focuses on this issue

1. Common Vulnerability Scoring System (CVSS-SIG) v2, http://www.first.org/cvss/

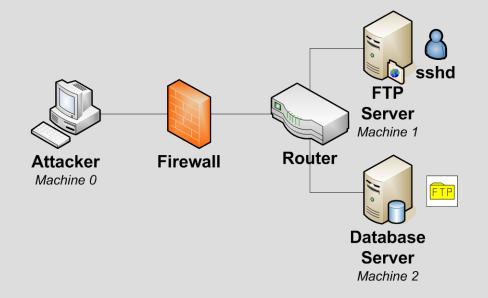

Challenges in Security Risk Metrics

Counting the number of vulnerabilities is not enough

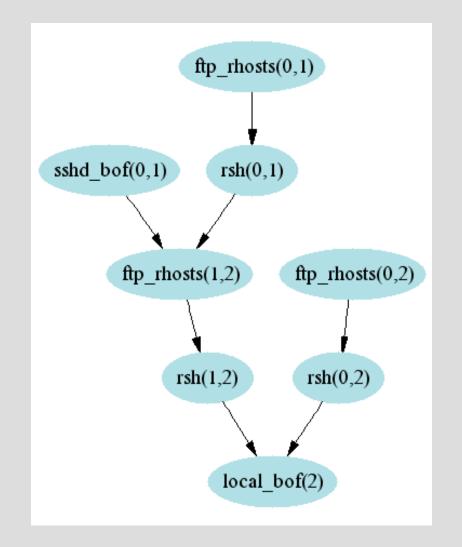

- Vulnerabilities have different importance
- The scoring of a vulnerability is a challenge
 - Context of the Application
 - Configuration of the Application
- How to *compose* vulnerabilities for the overall security of a network system


What is an Attack Graph

- A model for
 - How an attacker can *combine* vulnerabilities to stage an attack such as a data breach
 - Dependencies among vulnerabilities



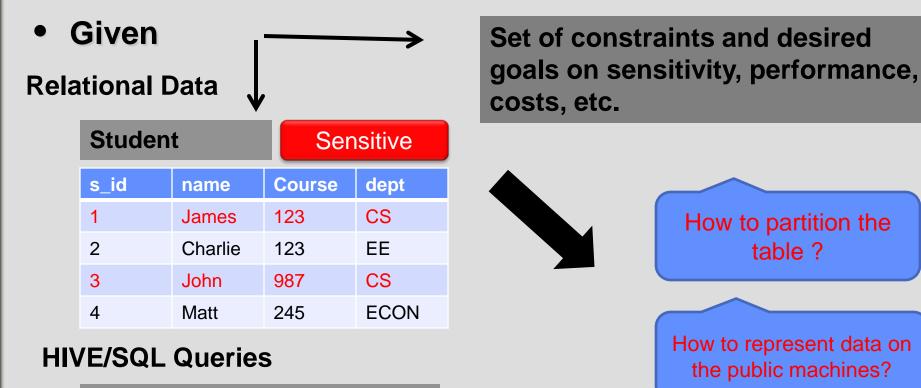
Possible attack paths


Attack Graph (Another Example)

Different Paths for the Attack

- $sshd_bof(0,1) \rightarrow ftp_rhosts(1,2) \rightarrow rsh(1,2) \rightarrow local_bof(2)$
- $ftp_rhosts(0,1) \rightarrow rsh(0,1) \rightarrow ftp_rhosts(1,2) \rightarrow rsh(1,2)$ $\rightarrow local_bof(2)$
- $ftp_rhosts(0,2) \rightarrow rsh(0,2) \rightarrow local_bof(2)$

Attack Graph from machine 0 to DB Server


Summary on Risk Modeling

- Based on attack graphs, we have proposed a model for security risk analysis of information systems
- The metric meets intuitive requirements
- We plan to extend this model for hybrid cloud environment

Outline

- Risk-based Approach to data management in cloud [Sharad]
 - Motivation focusing on why
- Modeling Risks [Anoop]
 - State-of-the-art In enterprise networks
 - Thoughts on generalizing to cloud data
- Given risks, example data and workload partitioning problem [Sharad]
 - Some initial results [IEEE Cloud, 2012-a, 2012-b]

Data & Computation Partitioning Problem

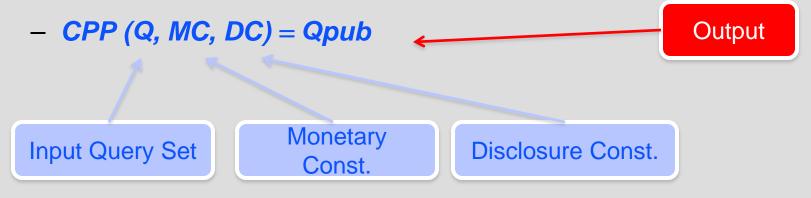
Q1: SELECT name, Course from Student where dept = CS

Q2: SELECT dept, count(*) FROM Student GROUP_BY dept HAVING dept != CS

Q3: SELECT * FROM Student WHERE course != 987 Q1 has the most sensitive exposure Q2 execution is the most expensive

How to split

computation?


Computation Partitioning Problem (CPP)

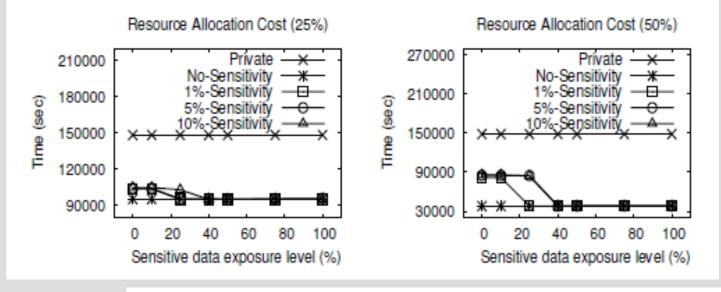
Find a subset of given query workload, $Q_{pub} \subseteq Q$ and subset of the $\sum freq(q) \ x \ runT_{pub}(q)$ such that $ORunT(Q',Q'') = \max \left\{ \begin{array}{c} q \in Q \\ q \in Q \\ \end{array} \right\}$ $\sum freq(q) \ x \ runT_{priv}(q)$ $q \in Q' - Q'$ $ORunT(Q,Q_{pub})$ minimize (1) $store(R_{pub}) + \sum freq(q) \times proc(q) \le MC$ subject to $q \in Q_{nub}$ (2) $\underline{sens}(R_{pub}) \leq DC$ The estimated (3) $\forall q \in Q_{pub} \ baseTables(q) \subseteq R_{pub}$ # of sensitive cells exposed The estimated minimum set of data MC, DC are user defined constraints items necessary to answer query q E Q

Solution to CPP

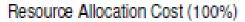
• CPP can be simplified to only finding *Qpub*

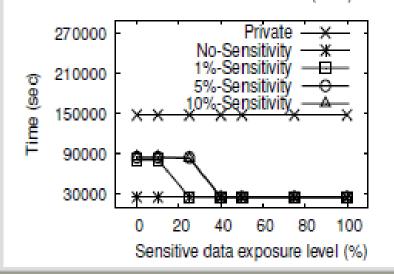
• Dynamic Programming Approach

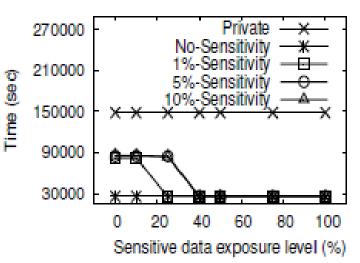
Experimental Setting


Experimental Setting

- Private Cloud: 14 Nodes, located at UTD, Pentium IV, 4GB Ram, 290-320GB disk space
- Public Cloud: 38 Nodes, located at UCI, AMD Dual Core, 8GB Ram, 631GB disk space
- Hadoop 0.20.2 and Hive 0.7.1
- Dataset
 - 100GB TPC-H Data
- Query Workload
 - 40 queries containing modified versions of Q1, Q3, Q6, Q11 of TPC-H Queries


Experimental Setting


- Estimation of Weight (w_x)
 - Running all 22 TPC-H queries for a 300GB dataset
 - $w_{pub} \approx 40MB/sec$, $w_{priv} \approx 8MB/sec$
- Resource Allocation Cost
 - Amazon S3 Pricing for storage and communication
 - Storage = \$0.140/GB + PUT, Communication= \$0.120/GB + GET
 - PUT=\$0.01/1000 request, GET=\$0.01/10000 request
 - Amazon EC2 and EMR Pricing for processing
 - \$0.085 + \$0.015 = \$0.1/hour
- Sensitivity
 - Customer : *c_name, c_phone, c_address attributes*
 - Lineitem: All attributes in %1-5-10 of tuples


Experimental Results

Resource Allocation Cost (75%)

44

Summary

- Challenge in adopting cloud-based solutions → loss of control over data
- Leads to privacy & security concerns
- Owners need tools that empower them to manage their sensitive information in the cloud
 - Cryptography offers only limited solutions. It is part of, but not the whole solution.
- risk-minimization based approach offers an attractive possibility. Empowers users to control
 - how data is represented in cloud
 - When to release more and when to scale back
 - Supports mechanism to strike the required balance between utility and data loss (exposure) risk.

Radicle Publications

- Building Disclosure Risk Aware Query Optimizers for Relational Databases, Mustafa Canim, Murat Kantarcioglu, Bijit Hore, Sharad Mehrotra, VLDB 2010.
- Secure Multidimensional Range Queries over Outsourced Data, Bijit Hore, Mustafa Canim, Murat Kantarcioglu, Sharad Mehrotra, VLDBJ 2012.
- CloudProtect: Managing Data Privacy in Cloud Applications, Mamadou Diallo, Bijit Hore, Ee-Chien Chang, Sharad Mehrotra, Nalini Venkatasubramanian, IEEE CLOUD 2012.
- Risk-aware Workload Distribution in Hybrid Clouds, Kerim Oktay, Vaibhav Khadilkar, Bijit Hore, Murat Kantarcioglu, Sharad Mehrotra, Bhavani Thuraisingham, IEEE CLOUD 2012.
- Indexing Encrypted Documents for Supporting Efficient Keyword Search. Bijit Hore, Ee-Chien Chang, Mamadou Diallo, Sharad Mehrotra, SDM 2012.
- Secure Quasi-Realtime Collaborative Editing over Low-Cost Storage Services. Chunwang Zhang, Junjie Jin, Ee-Chien Chang, Sharad Mehrotra, SDM 2012.
- CloudProtect: A Middleware for Managing Privacy in Cloud Applications, Mamadou Diallo (Masters Thesis) UCI 2012.
- Hibrider: A Framework for Partitioning Workloads over Hybrid Cloud, Vaibhav Khadilkar,Kerim Oktay, Murat Kantarcioglu, Sharad Mehrotra, Bhavani Thuraisingham, TR '12
- Secure Data Processing in Hybrid Clouds, Vaibhav Khadilkar, Kerim Oktay, Murat Kantarcioglu, Sharad Mehrotra, IEEE Data Engineering Bulletin, Dec. 2012.